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In the operation of power systems, the knowledge of the system state is required by
several fundamental functions, such as security assessment, voltage control and sta-
bility analysis. By making reference to the static state of the system represented by
the voltage phasors at all the network buses, it is possible to infer the system oper-
ating conditions. Until the late 1970s, conventional load flow calculations provided
the system state by directly using the raw measurements of voltage magnitudes and
power injections. The loss of one measurement made the calculation impossible and
the presence of measurement errors affected dramatically the computed state. To over-
come these limitations, load flow theory has been combined with statistical estimation
constituting the so-called state estimation (SE). The latter consists in the solution of
an optimization problem that processes the measurements together with the network
model to determine the optimal estimate of the system state. The outputs of load flow
and SE are composed of the same quantities, typically the voltage magnitude and
phase at all the network buses, but SE uses all the types of measurements (e.g., volt-
age and current magnitudes, nodal power injections and flows, synchrophasors) and
evaluates their consistency using the network model. The measurement redundancy
is key to tolerate measurement losses, identify measurement and network parameter
errors, and filter out the measurement noise. The foregoing properties of SE allow
the system operator to obtain an accurate and reliable estimate of the system state that
consequently improves the performance of the functions relying on it.

Traditionally, SE has been performed at a relatively low refresh rate of a few
minutes, dictated by the time requirements of the related functions together with
the low measurement acquisition rate of remote terminal units (RTUs).1 Nowadays,
the emerging availability of phasor measurement units (PMUs) allows to acquire

1RTUs are devices installed at the network substations that regularly send measurements, usually unsyn-
chronized, to the network operator control centre. Typically, these measurements are composed of voltage
and current magnitudes as well as active and reactive powers.
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accurate and time-aligned phasors, called synchrophasors, with typical streaming
rates in the order of some tens of measurements per second [1, 2]. This technology is
experiencing a fast evolution, which is triggered by an increasing number of power
system applications that can benefit from the use of synchrophasors. SE processes
can exploit the availability of synchrophasor measurements to achieve better accuracy
performance and higher refresh rate (sub-second).

PMUs already compose the backbone of wide area monitoring systems in the
context of transmission networks to which several real-time functionalities are con-
nected, such as inter-area oscillations, relaying, fault location and real-time SE [3, 4].
However, PMUs might represent fundamental monitoring tools even in the context
of distribution networks for applications such as: SE [5, 6], loss of main [7], fault
event monitoring [8], synchronous islanded operation [9] and power quality monitor-
ing [10]. The recent literature has discussed the use of PMUs for SE in distribution
networks both from the methodological point of view [11] and also via dedicated
real-scale experimental setups [12, 13].

Since the pioneering works of Schweppe on power system SE in 1970 [14–16],
most of the research on the subject has investigated static SE methods based on
weighted least squares (WLS) [17–19]. Static SE computes the system state perform-
ing a “best fit” of the measurements belonging only to the current time-step. Another
category of state estimators are the recursive methods, such as the Kalman filter
(KF). In addition to the use of the measurements and their statistical properties, they
also predict the system state by modelling its time evolution. In general, recursive
estimators are characterized by higher complexity and the prediction introduces an
additional source of uncertainty that, if not properly quantified, might worsen the
accuracy of the estimated state. Besides, their ability to filter out measurement noise
could not be exploited due to the low SE refresh rate: even in quasi-steady state
conditions, the measurement noise was smaller than the state variations between two
consecutive time-steps. However, the effectiveness of power system SE based on KF
has been recently reconsidered thanks to the possibility to largely increase the SE
refresh rate by using synchrophasor measurements.

The chapter starts by providing the measurement and process model of WLS and
KF SE algorithms and continues with the analytical formulation of the two families
of state estimators, including their linear and non-linear versions as a function of the
type of available measurements. Finally, two case studies targeting IEEE transmission
and distribution reference networks are given.

6.1 State estimation measurement and process model

In general, any SE algorithm relies on a measurement model, which expresses how
the system state variables are related to the measurements and the measurement noise.
The link between the state variables and the measurements can be either linear or non-
linear, depending on the kind of measurements used. For the case of power systems,
the link is represented by the network model that is composed of the network topology
and the electrical parameters of the various components, such as transmission lines



Static and recursive PMU-based state estimation processes 191

Process
model

Estimated
state

Static 
SE

Recursive
SE

Network
model

Measurement
model

Estimated
state

Network
model

Measurement
model

Figure 6.1 Inputs and outputs of static and recursive state estimators

and transformers. Additionally to the measurement model, recursive state estimators,
such as KF, use a process model to represent the time evolution of the system state as
a function of the previous system states, the controllable inputs and the process noise.
Figure 6.1 shows the inputs and outputs of static and recursive state estimators.

6.1.1 Measurement model

The measurement model of the SE can be formulated in a common way regardless of
the estimator type (static or recursive). In particular, if the measurements come only
from PMUs, the measurement model is linear, whereas if the measurements come
from RTUs or a hybrid set of RTUs and PMUs, the measurement model is non-linear.
In what follows, examples of formulations of these measurement models are given.

6.1.1.1 Linear measurement model
In case the SE uses only measurements coming from PMUs composed of voltage
and/or current phasors, the SE can be formulated in a linear way. The state variables
are represented by the phase-to-ground nodal voltages, or the branch voltages, or
nodal current injections or current flows (or even a mix of them, provided that they
are independent state variables).

By defining the set of network buses S, the number of network buses is equal
to s = |S|, where the operator | | denotes the cardinality of a set. Then, the state of
a three-phase (3-ph) network with s buses is denoted by x ∈ R

n (where n = 3 · 2s is
the number of state variables that compose the set of state variables N ) that, in most
of the literature on the subject, is represented by the phase-to-ground nodal voltages.
The set of three phases a, b, c is denoted by P . Also, the set of network branches is
denoted by B. To obtain an exact linear measurement model, measurements and state
variables are expressed in rectangular coordinates. Hence, the state is composed of
the real and imaginary parts of the voltage phasors at every bus:

x = [Va,b,c
1,re , . . . , Va,b,c

i,re , . . . , Va,b,c
s,re , Va,b,c

1,im , . . . , Va,b,c
i,im , . . . , Va,b,c

s,im ]T (6.1)

where

Va,b,c
i,re = [Va

i,re, Vb
i,re, Vc

i,re]
(6.2)

Va,b,c
i,im = [Va

i,im, Vb
i,im, Vc

i,im]
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are, respectively, the real and imaginary parts of the voltage phasor at bus i in the
three phases a, b and c. It is worth mentioning that, as explained in Reference 20, the
existence of PMU measurements can eliminate the need to choose a reference bus,
i.e., a bus where the phase or the imaginary part of the voltage is not included in the
state and is assumed to have a certain value (usually equal to zero). Therefore, unlike
the conventional SE formulation, in this case the phase or the imaginary part of the
voltage is estimated at every bus.

To provide an example of linear measurement model, it is assumed that measure-
ments come only from PMUs that measure nodal voltage phasors, current injection
phasors and current flow phasors. The set of buses where PMUs measure nodal
voltage phasors is D1 (d1 = |D1|). Similarly, the set of buses where current injec-
tion phasors are measured is D2 (d2 = |D2|) and the set of branches where current
flow phasors are measured is D3 (d3 = |D3|). Hence, the set of measurements M is
composed of:

● 3d1 phase-to-ground voltage phasors;
● 3d2 current injection phasors;
● 3d3 current flow phasors;

and its cardinality is equal to m = 2 · (3d1 + 3d2 + 3d3). Therefore, the measurement
array z ∈ R

m is equal to:

z = [zV , zIinj , zIflow ]T (6.3)

where

zV = [Va,b,c
1,re , . . . , Va,b,c

d1,re, Va,b,c
1,im , . . . , Va,b,c

d1,im]

zIinj = [Ia,b,c
inj,1,re, . . . , Ia,b,c

inj,d2,re, Ia,b,c
inj,1,im, . . . , Ia,b,c

inj,d2,im] (6.4)

zIflow = [Ia,b,c
flow,1,re, . . . , Ia,b,c

flow,d3,re, Ia,b,c
flow,1,im, . . . , Ia,b,c

flow,d3,im].

The convention employed in this chapter for the currents injections, and also
the most common, is to consider with positive sign the current flowing from the
loads/generators to the respective bus.

The equation that relates the measurements with the system state variables is:

z = Hx + ε (6.5)

where H is an m × n matrix that represents the link between measurements and state
variables and ε is the measurement noise. It is important to point out that, in the case
of linear SE, H does not represent a linear approximation of the measurement model,
since it corresponds to the exact link between measurements and state variables. The
measurement noise is assumed to be white and Gaussian:

p(ε) ∼ N (0, R) (6.6)

where R is the measurement noise covariance matrix. Note that the normality of
PMU errors is based on experimental evidences of error distributions of actual PMUs
(e.g., Reference 21). Therefore, the diagonal entries of R represent the variances
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Figure 6.2 3-ph two-port π -model of a generic network branch

of the measurements, which correspond to the cumulative uncertainty of sensors2

and meters. The off-diagonal entries account for eventual correlation between the
measurements that occurs if mutual influence among meters is present.

For the case of power networks, matrix H of (6.5) is derived from the network
topology and the electrical parameters of the various network components. To this
end, the so-called nodal analysis linearly links the nodal current injections with the
considered system state, i.e., the phase-to-ground nodal voltages. As it is described
in what follows, such link consists in the so-called compound network admittance
matrix Y, whose derivation is given below.

A generic 3-ph network branch between buses i and � can be represented by the
two-port π -model shown in Figure 6.2. Its parameters are 3 × 3 matrices of complex
numbers, i.e., the longitudinal admittance yi�,L and the two transverse admittances
yi�,T and y�i,T :

yi�,L = gi�,L + jbi�,L (6.7)

yi�,T = gi�,T + jbi�,T (6.8)

y�i,T = g�i,T + jb�i,T (6.9)

where

● j is the imaginary unit;
● gi�,L and bi�,L are, respectively, the longitudinal conductance and susceptance;

2In this chapter, the sensors refer to the transducers (such as voltage or current instrument transformers)
that scale down the input voltage and current signals in order to interface the meters (represented, in this
case, by PMUs and/or RTUs) with the electrical network.
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● gi�,T and bi�,T are, respectively, the transverse conductance and susceptance from
the side of bus i.

● g�i,T and b�i,T are, respectively, the transverse conductance and susceptance from
the side of bus �;

The 3 × 3 matrix representing the longitudinal admittance is given by (the same matrix
form applies also to the transverse admittances as shown in Figure 6.2):

yi�,L =

⎡
⎢⎢⎣

gaa
i�,L + jbaa

i�,L gab
i�,L + jbab

i�,L gac
i�,L + jbac

i�,L

gba
i�,L + jbba

i�,L gbb
i�,L + jbbb

i�,L gbc
i�,L + jbbc

i�,L

gca
i�,L + jbca

i�,L gcb
i�,L + jbcb

i�,L gcc
i�,L + jbcc

i�,L

⎤
⎥⎥⎦ (6.10)

The expression of these parameters depends on the type of network branch. For
instance, a 3-ph transmission line characterized by a longitudinal impedance zline and
a transverse admittance yline can be represented by the following two-port π -model
parameters:

yi�,L = z−1
line (6.11)

yi�,T = y�i,T = yline,T /2 (6.12)

Note that yi�,T can be different from y�i,T for some network components, such as
tap changing or phase-shifting transformers. For the particular case of phase-shifting
transformers, the two-port network is not reciprocal.

A detailed description of the procedure to construct the network admittance matrix
is given in Reference 17. Considering a 3-ph network of s buses, Y is a 3s × 3s matrix
with the following form:

Y =

⎡
⎢⎢⎢⎢⎣

Y11 Y12 · · · Y1s

Y21 Y22 · · · Y2s

...
...

. . .
...

Ys1 Ys2 · · · Yss

⎤
⎥⎥⎥⎥⎦

(6.13)

where

● the off-diagonal element Yi� (i �= �) is a 3 × 3 matrix equal to the opposite of the
longitudinal admittance of the branch between buses i and �:

Yi� = −yi�,L (6.14)

and Yi� = Y�i, so that Y is symmetrical;
● the diagonal element Yii is a 3 × 3 matrix equal to the sum of the longitudinal

admittances of the branches connected to bus i and the transverse admittances of
the branches connected between bus i and the neutral:

Yii =
s∑

�=1

(yi�,L + yi�,T ) (6.15)

Note that yi�,L and yi�,T are null matrices if bus i is not connected to bus �.
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The expression of the generic element Yi� of the compound admittance matrix is:

Yi� =

⎡
⎢⎢⎣

Gaa
i� + jBaa

i� Gab
i� + jBab

i� Gac
i� + jBac

i�

Gba
i� + jBba

i� Gbb
i� + jBbb

i� Gbc
i� + jBbc

i�

Gca
i� + jBca

i� Gcb
i� + jBcb

i� Gcc
i� + jBcc

i�

⎤
⎥⎥⎦ (6.16)

where G and B are the real and imaginary parts of the admittance matrix Y,
respectively.

The expressions of the real and imaginary parts of the 3-ph nodal current injection
phasors at bus i ∈ S and phase p ∈ P are:

I p
i,re =

s∑
�=1

∑
l∈P

[
G pl

i� V l
�,re − Bpl

i�V l
�,im

]
(6.17)

I p
i,im =

s∑
�=1

∑
l∈P

[
G pl

i� V l
�,im + Bpl

i�V l
�,re

]
(6.18)

where the subscripts i and � refer to the bus indices whereas the superscripts p and l
refer to the phase indices.

The current flow phasor I p
flow,u at branch u ∈ B and phase p ∈ P can be also

indicated as I p
i� with respect to the two terminal buses i and � of this branch. Note that

I p
i� is measured from the side of bus i, while I p

�i is measured from the side of bus �.
The expressions of the real and imaginary parts of the 3-ph current flow phasors at
the branch between buses i and � and phase p ∈ P are:

I p
i�,re =

∑
l∈P

[gpl
i�,L(V l

i,re − V l
�,re) − bpl

i�,L(V l
i,im − V l

�,im) + gpl
i�,T V l

i,re − bpl
i�,T V l

i,im] (6.19)

I p
i�,im =

∑
l∈P

[gpl
i�,L(V l

i,im − V l
�,im) + bpl

i�,L(V l
i,re − V l

�,re) + gpl
i�,T V l

i,im + bpl
i�,T V l

i,re] (6.20)

The structure of the matrix H of (6.5) is:

H =

⎡
⎢⎢⎣

HV

HIinj

HIflow

⎤
⎥⎥⎦ (6.21)

The part related to the nodal voltage phasor measurements HV is:

HV =
[
β υ

ζ η

]
(6.22)
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where

β
ip,re
�l,re =

{
1, if i = � and p = l
0, if i �= � or p �= l

(6.23)

υ
ip,re
�l,im = 0 (6.24)

ζ
ip,im
�l,re = 0 (6.25)

η
ip,im
�l,im =

{
1, if i = � and p = l
0, if i �= � or p �= l

(6.26)

In (6.23)–(6.26), the superscripts refer, respectively, to the bus, the phase and the
real or imaginary part of the measurements, while the subscripts refer to the state
variables. For instance, β

ip,re
�l,re is the scalar that links the measurement V p

i,re with the
state variable V l

�,re (in this specific case, the scalar is simply zero or one).
The part related to the current injection phasor measurements HIinj can be derived

in a straightforward way from (6.17) and (6.18):

HIinj =
[
� �

� ϒ

]
(6.27)

where

�
ip,re
�l,re = Gpl

i� (6.28)

	
ip,re
�l,im = −Bpl

i� (6.29)



ip,im
�l,re = Bpl

i� (6.30)

ϒ
ip,im
�l,im = Gpl

i� (6.31)

In (6.28)–(6.31), the superscripts and subscripts have the same meaning as in (6.23)–
(6.26).

The part related to the current flow phasor measurements HIflow can be derived
in a straightforward way from (6.19) and (6.20):

HIflow =
[
θ ϑ ι κ

λ ν ξ �

]
(6.32)

where

θ
i�p,re
il,re = gpl

i�,L + gpl
i�,T (6.33)

ϑ
i�p,re
�l,re = −gpl

i�,L (6.34)

ι
i�p,re
il,im = −(bpl

i�,L + bpl
i�,T ) (6.35)
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κ
i�p,re
�l,im = bpl

i�,L (6.36)

λ
i�p,im
il,re = bpl

i�,L + bpl
i�,T (6.37)

ν
i�p,im
�l,re = −bpl

i�,L (6.38)

ξ
i�p,im
il,im = gpl

i�,L + gpl
i�,T (6.39)

�
i�p,im
�l,im = −gpl

i�,L (6.40)

In (6.33)–(6.40), the superscripts refer, respectively, to the two terminal buses of
the branch, the phase and the real or imaginary part of the measurements, while the
subscripts refer to the state variables. For instance, θ

i�p,re
il,re is the scalar that links the

measurement I p
i�,re with the state variable V l

i,re.

6.1.1.2 Non-linear measurement model
In the case of a mixed set of measurements that includes PMUs and conventional
power and magnitude3 measurements, the SE becomes non-linear due to the non-
linear equations that link the non-phasor measurements with the system state. In
this case, the system state for a network with s buses is usually expressed in polar
coordinates:

x = [δa,b,c
1 , . . . , δa,b,c

i , . . . , δa,b,c
s , Va,b,c

1 , . . . , Va,b,c
i , . . . , Va,b,c

s ]T (6.41)

where

δ
a,b,c
i = [δa

i , δb
i , δc

i ]
(6.42)

Va,b,c
i = [V a

i , V b
i , V c

i ]

are, respectively, the phase and magnitude of the voltage phasor at bus i in the three
phases a, b and c.

The measurements are assumed to come from PMUs that measure voltage phasors
and from conventional power meters.4 The set of network buses where active and
reactive power injections are measured is U1 (u1 = |U1|). Then, the set of network
branches where active and reactive power flows are measured is U2 (u2 = |U2|). Hence,
it is assumed that the set of measurements M is composed of:

● 3d1 phase-to-ground voltage phasors;
● 3 · (2u1) active and reactive power injections;
● 3 · (2u2) active and reactive power flows.

3The magnitude indicates the amplitude of voltage and current signals.
4The magnitude and phase of current injections and flows could be added to the measurement set. The
equations related to current magnitude measurements can be found in Reference 19.
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and its cardinality is equal to m = 2 · (3d1 + 3u1 + 3u2). Therefore, the measurement
array z ∈ R

m is equal to:5

z = [zV , zPQinj , zPQflow ]T (6.43)

where

zT
V = [δa,b,c

1 , . . . , δa,b,c
d1

, Va,b,c
1 , . . . , Va,b,c

d1
]

zT
PQinj

= [Pa,b,c
inj,1 , . . . , Pa,b,c

inj,u1
, Qa,b,c

inj,1 , . . . , Qa,b,c
inj,u1

] (6.44)

zT
PQflow

= [Pa,b,c
flow,1, . . . , Pa,b,c

flow,u2
, Qa,b,c

flow,1, . . . , Qa,b,c
flow,u2

]

As stated before, in this case, the equation that links the measurements with the system
state variables is:

z = h(x) + ε (6.45)

where the vector h(x) ∈ R
m represents the non-linear function relating the system

state variables to the measurements, i.e., the so-called measurement function. As a
consequence, matrix H used in the SE process is a linearization of h(x) and does not
represent the exact link between measurements and state variables.

By using the same notation of (6.17) and (6.18), the expressions of the active and
reactive power injections with respect to the state variables are given by:

Pp
i = V p

i

s∑
�=1

∑
l∈P

V l
�(G pl

i� cos δ
pl
i� + B pl

i� sin δ
pl
i� ) (6.46)

Qp
i = V p

i

s∑
�=1

∑
l∈P

V l
�(G pl

i� sin δ
pl
i� − B pl

i� cos δ
pl
i� ) (6.47)

where δ
pl
i� = δ

p
i − δl

�.
By using the same notation of (6.19) and (6.20), the expressions of the active

and reactive power flows with respect to the state variables are given by:

P p
i� = V p

i

∑
l∈P

{V l
i [(g pl

i�,L + g pl
i�,T ) cos δ

pl
ii + (bpl

i�,L + bpl
i�,T ) sin δ

pl
ii ]}

− V p
i

∑
l∈P

[V l
�(gpl

i�,L cos δ
pl
i� + bpl

i�,L sin δ
pl
i� )] (6.48)

5In general, the voltage phasor measurements from PMUs and the power measurements from RTUs
are not obtained at the same time. In particular, the RTU measurements are characterized by lack of
global positioning system (GPS) synchronization, lower refresh rates and lower accuracy compared to the
PMU measurements. However, here it is assumed that at time t a full set of measurements composed of
synchronized voltage phasor and power measurements is available, as shown in (6.43).
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Q p
i� = V p

i

∑
l∈P

{V l
i [(g pl

i�,L + g pl
i�,T ) sin δ

pl
ii − (bpl

i�,L + bpl
i�,T ) cos δ

pl
ii ]}

− V p
i

∑
l∈P

[V l
�(g pl

i�,L sin δ
pl
i� − bpl

i�,L cos δ
pl
i� )] (6.49)

As it will be clarified later, both static and recursive state estimators require the
measurement model to be linear. Therefore, in the case of the non-linear measurement
model, H is the Jacobian matrix of the measurement function h(x):

H(x) = ∂h(x)

∂x
(6.50)

It is called measurement Jacobian and its sub-matrices for the considered available
measurements are:

H =
⎡
⎣

HV

HPQinj

HPQflow

⎤
⎦ (6.51)

where HV is the part of the Jacobian that is related to the partial derivatives of the
phase and magnitude of the voltages as a function of the state, HPQinj is related to
the partial derivatives of the active and the reactive power injections as a function of
the state, and HPQflow is related to the partial derivatives of the active and the reactive
power flows as a function of the state.

The first part HV is given by:

HV =
[
� �

� �

]
(6.52)

where

�
ip,re
�l,re =

{
1, if i = � and p = l
0, if i �= � or p �= l

(6.53)

�
ip,re
�l,im = 0 (6.54)

	
ip,im
�l,re = 0 (6.55)

�
ip,im
�l,im =

{
1, if i = � and p = l
0, if i �= � or p �= l

(6.56)

In (6.53)–(6.56), the superscripts and subscripts have the same meaning as in (6.23)–
(6.26).

The second part HPQinj is equal to:

HPQinj =
⎡
⎢⎣

∂Pp
i

∂δl
�

∂Pp
i

∂V l
�

∂Qp
i

∂δl
�

∂Qp
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∂V l
�

⎤
⎥⎦ (6.57)
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The partial derivatives that correspond to the active power injections are:
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The partial derivatives that correspond to the reactive power injections are:

∂Q p
i

∂δ
p
i

= −(V p
i )2G pp

ii + V p
i

s∑
�=1

∑
l∈P

V l
�(Gpl

i� cos δ
pl
i� + Bpl

i� sin δ
pl
i� ) (6.62)

∂Q p
i

∂δl
�

= V p
i V l

�(−Gpl
i� cos δ

pl
i� − Bpl

i� sin δ
pl
i� ) (6.63)

∂Q p
i

∂V p
i

= −V p
i B pp

ii +
s∑

�=1

∑
l∈P

V l
�(Gpl

i� sin δ
pl
i� − Bpl

i� cos δ
pl
i� ) (6.64)

∂Q p
i

∂V l
�

= V p
i (Gpl

i� sin δ
pl
i� − Bpl

i� cos δ
pl
i� ) (6.65)

The third part of the Jacobian HPQflow is equal to:

HPQflow =

⎡
⎢⎢⎢⎣
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The partial derivatives that correspond to the active power flows are:
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The partial derivatives that correspond to the reactive power flows are:
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6.1.2 Network observability

A power grid is fully observable if it is possible to calculate all the system state
variables using a given set of measurements. For a given network model, the network
observability is influenced by the type of available measurements (e.g., nodal voltages,
current/power injections and flows) and their locations.

A necessary (but not sufficient) condition for the network observability is that
the total number of measurements should be equal or larger than the total number of
state variables, i.e., m ≥ n. However, the criterion that needs to be always satisfied
for the network to be fully observable is that matrix H must be of full rank.
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At the design stage of the network measurement infrastructure, the type and
location of the measurements are chosen in order to satisfy the network observability
criteria. However, in case of data losses or topology changes, a new observability
study must be conducted in real-time before the SE computation. If the network
becomes unobservable, it can be split in multiple observable sub-networks called
observable islands, and a separate SE is performed for every island. Additionally,
both at the design stage and in real-time, the observability criteria can be met by
adding pseudo-measurements.

There are several methods to perform the observability analysis, using graph
theory or mathematical techniques, e.g., References 19, 22, 23. The minimum set of
n measurements that can guarantee the full network observability is called critical set
and if one measurement is removed from this set, the system state cannot be calculated.
Note that the critical set of measurements is not unique since it can be composed of
measurements of different type and location. Adding measurements to the critical set
is very beneficial for the SE process since it results in higher estimation accuracy,
improved robustness against data loss, and enhanced bad data identification capability.

6.1.3 Process model

As shown in Figure 6.1, recursive SE exploits the statistical properties of the system
state by modelling its time evolution via a process model. In particular, the considered
linear discrete-time process model can be formulated as [24]:

xt = Axt−1 + But−1 + wt−1 (6.75)

where

● t is the time-step index;
● x ∈ R

n represents the system state;
● u ∈ R

uc represents a set Uc (uc = |Uc|) of known controllable variables;
● w ∈ R

n represents the process noise;
● A is an n × n matrix that links the system state x at time-step t − 1 with the one at

the time-step t, for the case of null controllable variables and null process noise;
● B is an n × uc matrix that links the system state x at time-step t with the

controllable variables u at time-step t − 1, for the case of null process noise.

In general, also the matricesA and B might change at each time-step. The process
noise wt−1 is assumed to be a Gaussian white sequence:

p(wt−1) ∼ N (0, Qt−1) (6.76)

where Qt−1 is the process noise covariance matrix.
As it has been already clarified, power system SE is facilitated by the use of

synchrophasor measurements streamed by PMUs at a high frame rate, e.g., 50 frames-
per-second – fps. The advantage of this working condition is that the state exhibits
small variations between two consecutive time-steps, so that a good approximation
of matrix A can be the identity matrix I. In addition, the power system inputs are
typically not controllable, i.e. B is set equal to the null matrix 0. Therefore, a suitable



Static and recursive PMU-based state estimation processes 203

process model for the case of power system SE is the autoregressive integrated moving
average – ARIMA (0,1,0) model given by:

xt = xt−1 + wt−1 (6.77)

The model of (6.77) can be derived from (6.75) by imposing A = I and B = 0 for
the aforementioned reasons. The application of this process model to power system
SE using KF was firstly proposed in 1970 by Debs and Larson [25] and then it was
adopted by other authors, e.g., References 26,27. An advantage of using this process
model is that only Q has to be assessed. An heuristic method for the assessment of Q
in the context of power system SE is proposed in Reference 28 and recalled in Section
6.3.4. The numerical validation of the correctness of this process model is provided
in Section 6.7 by using the procedure presented in Reference 5.

Observation. In most of the cases, including power system SE, it is reasonable
to assume that the process and measurement noises are uncorrelated:

E[wεT ] = 0 (6.78)

6.2 Static state estimation: the weighted least squares

The WLS problem is generally formulated as an unconstrained optimization problem.
While the least squares requires the measurement noises to have the same vari-
ances, the WLS is used when measurements are characterized by different accuracies
(heteroscedasticity). Indeed, the WLS method is able to weight the measurements
according to their accuracies. The WLS relies on the following assumptions:

1. The measurement noises are Gaussian-distributed with null mean value.
2. The measurement noises are uncorrelated; therefore, the measurement noise

covariance matrix R is diagonal.
3. The measurement matrix H that links the measurements with the state variables

is of full rank, so that the network is observable.

Observation. Assumption 2 could be relaxed if significant mutual correlation
among measurement errors is present. For such purpose, the problem becomes the
so-called generalized least squares, where R is a full matrix [29, 30]. However, this
case is unlikely to occur in power systems due to the following reasons [5]:

● Measurements provided by different meters can be reasonably considered
independent [30], and it is assumed to use no 3-ph multi-function meters [29].

● The sensors are typically installed separately in each of the three phases and the
cross-talk interferences are assumed to be negligible.

● The voltage and current magnitudes measured by the same PMU can be usually
considered uncorrelated [30].

● As demonstrated in Reference 30, neglecting PMU correlations (both in magni-
tude and phase) in the estimator model does not lead to a significant decrease of
the SE accuracy.
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The WLS method can be derived using the maximum likelihood estimation con-
cept as in Reference 31. Indeed, the goal is to compute the most likely system state
given a set of measured quantities. The measurement noises are assumed to have the
same and known Gaussian probability distribution with zero mean. The variances
of the measurement noises compose the diagonal elements of R. The measurement
residual vector r is defined as:

r = z − h(x) (6.79)

where the measurement function h(x) can be either linear or non-linear, as in (6.5)
and (6.45), respectively. Then, the objective of the WLS optimization problem is to
minimize the weighted sum of the squares of the measurement residuals:6

J (x) = rT R−1r (6.80)

Equation (6.80), since R is diagonal (assumption 2 of the WLS), becomes:

J (x) =
m∑

i=1

r2
i

Rii
(6.81)

It can be seen that the reciprocal of the measurement noise variances represents the
weights assigned to each measurement, so that the higher the accuracy, the higher the
weight.

At this point, the WLS algorithm has two different formulations depending on the
types of measurements available. In particular, as it is explained in Sections 6.1.1.1
and 6.1.1.2, the choice of the types of measurements makes the measurement function
linear or non-linear leading to the formulation of linear or non-linear SE, respectively.

6.2.1 Linear weighted least squares state estimator

In the case of linear weighted least squares (LWLS), the state is defined by using (6.1)
and the exact linear measurement model is (6.5). The measurement residual vector is
given by:

rt = zt − Hxt (6.82)

where H is the exact matrix linking measurements and state variables, which contains
no approximations and it is constant in time for a given network model. In this case, J
is a quadratic function of the unknown state x with a minimum that can be computed
analytically by imposing the derivative of J equal to zero evaluated in correspondence
of the estimated state x̂, as follows:

∂J (xt)

∂xt

∣∣∣∣̂
x

= ∂(rT
t R−1

t rt)

∂xt

∣∣∣∣̂
x

= 0 (6.83)

that yields:

HT R−1
t (zt − Hx̂t) = 0 (6.84)

6See Reference 19 for the formal derivation of (6.80) and (6.81).
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Solving for x̂t yields:

x̂t = G−1
t HT R−1

t zt (6.85)

where G is the so-called Gain matrix that is defined as:

Gt = HT R−1
t H (6.86)

The covariance matrix of x̂t is:

cov( x̂t) = G−1
t (6.87)

Note that while H is constant in time for a given network model, R may change
at each time-step for the reasons explained in Section 6.4.

As discussed in detail later in Section 6.5, the presence of erroneous mea-
surements can be detected by analysing the vector of the normalized measurement
estimation residual vector r̂ N

t . The measurement estimation residual vector and its
covariance matrix are:

r̂t = zt − Hx̂t (6.88)

cov( r̂t) = Ct = Rt − HG−1
t HT (6.89)

then, the ith element of r̂ N
t is computed as:

r̂ N
t,i =

∣∣̂rt,i

∣∣
√

Ct,ii

(6.90)

6.2.2 Non-linear weighted least squares

In the case of non-linear weighted least squares (NLWLS), the state is defined by
(6.41) and the measurement model is non-linear and given by (6.45). The measurement
residual vector is given by:

rt = zt − h(xt) (6.91)

where h(x) is the non-linear measurement function linking measurements and state
variables. Thus, unlike the linear case, substituting (6.91) into (6.83) yields:

HT ( x̂t)R−1
t [zt − h( x̂t)] = 0 (6.92)

where H( x̂t) is the measurement Jacobian evaluated at x̂t :

H( x̂t) = ∂h(xt)

∂xt

∣∣∣∣̂
xt

(6.93)

To solve (6.92), the non-linear function h(xt) can be linearized around an initial vector
xt,k as:

h(xt) = h(xt,k ) + H(xt,k )(xt − xt,k ) (6.94)

that substituted in (6.92) yields:

HT ( x̂t,k )R−1
t [zt − h( x̂t,k )] − G( x̂t,k )( x̂t,k+1 − x̂t,k ) = 0 (6.95)
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where G is the Gain matrix already defined in (6.86). It can be seen that the lineariza-
tion leads to an iterative algorithm where k is the iteration index. The matrices H( x̂t,k )
and G( x̂t,k ) can be abbreviated as Ht,k and Gt,k , respectively. Rearranging (6.95) leads
to the so-called normal equation:

Gt,k ( x̂t,k+1 − x̂t,k ) = HT
t,kR−1

t [zt − h( x̂t,k )] (6.96)

Note that for the case of NLWLS, H is a function of the network state; consequently,
it is not constant in time and needs to be recomputed at every time-step. Equation
(6.96) can be solved with various techniques (e.g., forward/backward substitution as
proposed in Reference 19) or by directly inverting the Gain matrix as:

x̂t,k+1 = x̂t,k + G−1
t,k HT

t,kR−1
t [zt − h( x̂t,k )] (6.97)

Equations (6.96) and (6.97) are iterated until convergence. Some possible stopping
criteria are:

1. max|̂xt,k+1 − x̂t,k | ≤ ε1

2. |J ( x̂t,k+1) − J ( x̂t,k )| < ε2

3. J ( x̂t,k+1) < ε3

where ε1, ε2 and ε3 are a priori selected thresholds.

6.3 Recursive state estimation: the Kalman filter

In 1960, R.E. Kalman published his most famous paper, i.e., Reference 32, describing
a recursive solution to the discrete data linear filtering problem. Since then, the KF
has been used in a large number of different fields including power systems SE.

The KF relies on the following assumptions:

1. The process and measurement noises are Gaussian white sequences.
2. The process and measurement noises are uncorrelated, as indicated by (6.78).
3. The measurement matrix H that links the measurements with the state variables

is of full rank, so that the network is observable.

There are several versions of KF. The Discrete Kalman Filter (DKF) is used for
linear formulations of the SE problem, whereas the Extended Kalman Filter (EKF)
is used when the process and/or the measurement model are non-linear. These two
versions of KF are described, respectively, in Sections 6.3.1 and 6.3.2 with reference
to the ARIMA (0,1,0) process model of (6.77).

6.3.1 Discrete Kalman filter

As known (e.g., Reference 24), DKF consists of two different parts, the so-called
time-update (prediction) and the measurement-update (estimation). In what follows,
the derivation of the KF equations is presented. The goal is to find an unbiased and
minimum variance estimator.
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Recursivity:The first assumption is that at time t − 1 there is already an estimate
x̂t−1 which includes all information up to – and including – time t − 1. At the next
time-step t, this estimate is used to compute the predicted state x̃t . The goal is to find
an estimate x̂t for the state at time t that incorporates the new set of measurements zt

and the predicted state x̃t , e.g., Reference 33:

x̂t = K′t̃xt + Ktzt (6.98)

where K′t and Kt are two weighting matrices whose values are determined as reported
below.

The prediction and estimation errors are, respectively, defined as:

ẽt � xt − x̃t (6.99)

êt � xt − x̂t (6.100)

and the related prediction and estimation error covariance matrices are, respectively:

P̃t = E[ ẽt ẽT
t ] (6.101)

P̂t = E[ êt êT
t ] (6.102)

where E is the expected value operator.
By subtracting xt in both parts, (6.98) becomes:

x̂t − xt = K′t̃xt + Ktzt − xt (6.103)

Then, by substituting (6.5) in (6.103) for the current time-step t, (6.103) becomes:

x̂t − xt = K′t̃xt + Kt(Hxt + εt) − xt = K′t̃xt + (KtH − I)xt + Ktεt (6.104)

By adding and subtracting K′txt in the right-hand side of (6.104), the latter becomes:

x̂t − xt = K′t̃xt + (KtH − I)xt + Ktεt + K′txt − K′txt

= K′t (̃xt − xt) + (K′t + KtH − I)xt + Ktεt (6.105)

In order for the estimation to be unbiased the expected value of the estimation
error must be zero:

E[ x̂t − xt] = K′tE[̃xt − xt] − (I − KtH − K′t)E[xt] + KtE[εt] = 0 (6.106)

or

E[ êt] = K′tE[ ẽt] + (I − KtH − K′t)E[xt] − KtE[εt] = 0 (6.107)

Since E[εt] = 0 (assumption 1 of the KF) and E[ ẽt] = 0, the estimator is unbiased
only if:

K′t = I − KtH (6.108)

By substituting (6.108) in (6.98), the KF estimation equation is obtained:

x̂t = x̃t + Kt(zt − Hx̃t) (6.109)
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where Kt is the so-called Kalman Gain.7 The term γt = zt − Hx̃t in (6.109) is known
as innovation, which is a Gaussian white sequence with covariance matrix:

St = Rt + HP̃tHT (6.110)

Some methods for erroneous measurement detection are based on the analysis of the
normalized innovation, as explained in Section 6.5. The ith element of the normalized
innovation vector is computed as:

γ N
t,i =

∣∣γt,i

∣∣
√

St,ii

(6.111)

Note that Hx̃t is essentially the vector of the predicted measurements, so that
(6.109) can be interpreted as the sum of the prediction, plus the weighted difference
between actual and predicted measurements.

Calculation of the estimation error covariance matrix: by definition, (6.102) can
be also written as:

P̂t = cov( êt) = cov(xt − x̂t) (6.112)

By using (6.109), (6.112) becomes:

P̂t = cov(xt − ( x̃t + Kt(zt − Hx̃t)))

= cov(xt − ( x̃t + Kt(Hxt + εt − Hx̃t)))

= cov((I − KtH)(xt − x̃t) − Ktεt) (6.113)

Since εt is not correlated with the other terms, (6.113) becomes:

P̂t = cov((I − KtH)(xt − x̃t)) + cov(Ktεt) (6.114)

and thus:

P̂t = (I − KtH)cov(xt − x̃t)(I − KtH)T + Ktcov(εt)KT
t (6.115)

By definition, cov(εt) = Rt and cov(xt − x̃t) = P̃t , therefore:

P̂t = (I − KtH)̃Pt(I − KtH)T + KtRtKT
t (6.116)

The formula in (6.116) is also known as the Joseph form of the covariance update
equation and is valid for any value of the Kalman Gain Kt . However, if Kt is the
optimal gain, (6.116) can be further simplified.

Optimal Kalman Gain derivation: KF is a minimum variance estimator. The goal
is to minimize the expected value of the square of the magnitude of the estimation

7Note that the Kalman Gain Kt needs to be determined since, at this stage, it is still unknown.
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error E[‖xt − x̂t‖2]. This is equivalent to minimizing the trace of P̂t . By expanding
out the terms in (6.116):

P̂t = P̃t − KtHP̃t − P̃tHT KT
t + KtStKT

t (6.117)

The trace of P̂t is minimized when its matrix derivative with respect to the Kalman
Gain matrix is zero:

∂tr( P̂t)

∂Kt
= 0 (6.118)

Using the following identities:

∂tr(AB)

∂A
= BT (6.119)

∂tr(BAT )

∂A
= B (6.120)

∂tr(ABAT )

∂A
= 2AB, if B is a symmetric matrix (6.121)

and the fact that P̃t is a symmetric matrix, (6.118) becomes:

∂tr( P̂t)

∂Kt
= −2P̃tHT + 2KtSt = 0 (6.122)

Solving (6.122) for Kt yields the optimal Kalman Gain:

Kt = P̃tHT S−1
t = P̃tHT (HP̃tHT + Rt)−1 (6.123)

Hence, by multiplying both sides of (6.123) on the right by StKT
t :

KtStKT
t = P̃tHT KT

t (6.124)

Going back to (6.117), the last two terms are cancelled out, therefore:

P̂t = (I − KtH)̃Pt (6.125)

Calculation of the prediction error covariance matrix: the ARIMA (0,1,0) process
model of (6.77) is recalled here below:

xt = xt−1 + wt−1 (6.126)
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Thus, the KF state prediction equation is:

x̃t = x̃t−1 (6.127)

Adding the true state xt at both sides of (6.127) and using (6.126) yields:

xt − x̃t = xt−1 − x̂t−1 + wt−1 (6.128)

and it follows that:

P̃t = cov( êt−1 + wt−1) (6.129)

Since wt−1 is the process noise between time t − 1 and t, whereas êt−1 is the estimation
error up to time t − 1, they are uncorrelated; therefore:

P̃t = P̂t + Qt−1 (6.130)

To sum up, the formulation of the DKF-SE for the optimal Kalman Gain is the
following:

1. Time-update/prediction:

x̃t = x̂t−1 (6.131)

P̃t = P̂t−1 + Qt−1 (6.132)

2. Measurement-update/estimation:

Kt = P̃tHT (HP̃tHT + Rt)−1 (6.133)

x̂t = x̃t + Kt(zt − Hx̃t) (6.134)

P̂t = (I − KtH)̃Pt (6.135)

6.3.2 Extended Kalman filter

The EKF is used when the process to be estimated and/or the relationship between
measurements and state variables are non-linear, e.g., References 34, 35. In this case,
the equations that describe the EKF are similar to the ones of the DKF except for the
following differences:

● Similarly to (6.45), the equation that relates measurements and state variables is:

zt = h(xt) + εt (6.136)

● Matrix H is the measurement Jacobian defined by (6.50). It is not constant in
time for a given network model, but it changes at every time-step as a function
of x.
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The equations that describe the EKF-SE are:

1. Time-update/prediction:

x̃t = x̂t−1 (6.137)

P̃t = Pt−1 + Qt−1 (6.138)

2. Measurement-update/estimation:

Kt = P̃tHT
t (HtP̃tHT

t + Rt)−1 (6.139)

x̂t = x̃t + Kt(zt − h( x̃t)) (6.140)

P̂t = (I − KtHt )̃Pt (6.141)

6.3.3 Kalman Filter sensitivity with respect to the measurement and
process noise covariance matrices

As it has been already explained above, the KF equations involve two covariance
matrices, the measurement noise covariance matrix R and the process noise covariance
matrix Q. The values of these two matrices influence significantly the performance
of the KF. If they are not properly assessed, the quality of the estimated state given
by the KF-SE is not guaranteed. Therefore, it is important to perform a sensitivity
analysis of the KF with respect to R and Q (e.g., Reference 36).

The measurement noise covariance matrix represents the accuracies of the mea-
surement devices and it weights how much the KF trusts the measurements. Its value
can be easily inferred provided the knowledge of the accuracy of the measurement
infrastructure (sensors plus PMUs and/or conventional metering devices) and pseudo-
measurements (i.e., historical data and/or zero-injection buses). The process noise
covariance matrix represents the uncertainties introduced by the process model to
predict the system state. It is worth pointing out that in the literature dealing with
power systems SE using KF, the values of Q are, usually, arbitrarily selected although
they should be assessed in order to improve the estimation accuracy (e.g., References
25, 37, 38).

The influence of Rt and Qt on the Kalman gain Kt can be explained by looking at
(6.139). As Rt decreases, i.e., increasing the confidence on the measurement model,
Kt increases. As a consequence, this leads to an increase of the contribution of the
innovation γt = zt − Hx̃t in the estimation equation (6.134), so that the KF estimates
approach the WLS ones. In particular, as Rt → 0, also P̂t → 0, so that P̃t → Qt−1.
Therefore, the limit of Kt as Rt → 0 is:

lim
Rt→0

Kt = Qt−1HT (HQt−1HT )−1 (6.142)

On the other hand, as Qt−1 decreases, i.e., the process model is trusted more, Kt

decreases leading to an increasing weight of the predicted state with respect to the
innovation. As Qt−1 → 0, both P̂t and P̃t approach zero, so that also Kt tends to zero:

lim
Qt−1→0

Kt = 0 (6.143)
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Based on the above analysis, it becomes evident that a proper assessment of the
matrix Q is of fundamental importance to maximize the performance of the KF-SE.
The following section discusses this aspect.

6.3.4 Assessment of the process noise covariance matrix

The process noise covariance matrix can be assessed by using the heuristic method
firstly proposed in Reference 28 and then further investigated in Reference 5. This
method is effective in terms of estimation accuracy and suitable for real-time appli-
cations, although it needs a pre-tuning stage due to its heuristic nature. It assesses
the diagonal elements of Q by using a moving window composed of the previous N
estimated states. The method requires high-resolution state estimates to be effective.
In this respect, reference is made to SEs based on PMU measurements (exclusively
or through a mixed measurement set), characterized by high refresh rates in the order
of tens of fps. The application of this method to the case of power system SE is given
in Section 6.7.

In what follows, the formulation of the aforementioned method is briefly recalled.
At time-step t, the estimation of Qt−1 is performed by using the last N estimated states.
The procedure is the following:

1. Compute the cth element of the vector g ∈ R
n as the sample variance of the cth

element of the last N estimated states:

gc = var[ x̂t−1,c, . . . , x̂t−N , c] (6.144)

2. Then, the diagonal of Qt−1 is composed of the elements of g calculated in step 1:

Qt−1 = diag(g) (6.145)

In general, the diagonal elements of Q are not all equal to each other.

6.4 Assessment of the measurement noise covariance matrix

The measurement noise covariance matrix R is a matrix that may change from one
time-step to another. It can be diagonal or full, but it has to be positive definite. The
elements of R include the accuracy of both the measurement electrical sensors and
the PMUs/RTUs. The reasons making the measurement noise covariance matrix R
changing at every time-step are:

● The measurement errors are calculated with respect to the measured values.
● When the state is expressed in rectangular coordinates, e.g., linear SE, whereas

the measurement errors are given in polar coordinates, a transformation of coor-
dinates (projection from polar to rectangular coordinates) is performed at each
time-step. Another factor that generates time-dependent accuracies is that the
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true system frequency is different from the rated one, since phasors rotate.8 It is
important to mention that, in general, the transformed measurement errors in rect-
angular coordinates are not Gaussian-distributed, unless the standard deviations
of the original magnitude and phase errors are small enough.

Here below are described in detail the steps that lead to the derivation of R. In
Section 6.7, it is given a numerical example of how matrix R is derived.

1. The first step is the calculation of the maximum errors that consist in the cumula-
tive errors of the sensors and the PMUs/RTUs. The maximum errors are expressed
in percentage for the magnitude and in radians for the phase.

2. The second step consists in the expression of the maximum magnitude errors
with respect to the measured value.9

3. The third step includes the calculation of the cumulative standard deviations,
which are equal to one-third of the maximum errors, assuming that the 99.73%
of the values lie within three standard deviations from the mean.

4. This step, in case the SE is linear, includes the transformation of the measurement
errors and the associated standard deviations from polar coordinates (magnitudes
and phases) to rectangular coordinates (real and imaginary parts).

In what follows, the polar-to-rectangular projection of the measurement uncer-
tainties of phasors is described. Indeed, phasor uncertainties are usually expressed
in polar coordinates and their transformation to rectangular coordinates requires the
knowledge of the true value of the measured quantity that is, obviously, a hidden
value. For this reason, it is interesting to derive the analytical relationship that allows
to express the phasors uncertainties in rectangular coordinates as a function of the
measurements. The process here illustrated is based on the work presented in Ref-
erence 39. In particular, compared to Reference 39, it is illustrated a more detailed
derivation of the variances of the projected errors as well as a more detailed description
of the mathematical justification of the individual steps of the process.

The measured voltage magnitude and phase are denoted with Vz and δz.10

Then:

Vz = Vx + Ṽ (6.146)

δz = δx + δ̃ (6.147)

where Vx and δx are the true voltage magnitude and phase, respectively, whereas Ṽ and
δ̃ are the voltage magnitude and phase measurement errors. The latter are assumed to
be independent white Gaussian sequences with standard deviations equal to σV and
σδ , respectively.

8Note that even if all the phasor phases are referred to the phase of one of the phasors, i.e., they do not
rotate, their phases change with time, making the projection from polar to rectangular coordinates time
dependent.
9For instance, if the maximum magnitude error is equal to 5% and the measurement is 1.1 pu, then the
maximum error is equal to 0.05 × 1.1 = 0.055 pu.
10The same process applies to the case of the current measurements.
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The measurements in polar coordinates given in (6.146) and (6.147) are
transformed to measurements in rectangular coordinates:

Vre,z = Vz cos δz (6.148)

Vim,z = Vz sin δz (6.149)

where Vre,z and Vim,z are the measured voltage real and imaginary parts, respectively.
The measured real and imaginary voltages (Vre,z and Vim,z) can be expressed as a

function of the corresponding true quantities (Vre,x and Vim,x) and errors (Ṽre and Ṽim)
in the following way:

Vre,z = Vre,x + Ṽre = (Vx + Ṽ ) cos(δx + δ̃) (6.150)

Vim,z = Vim,x + Ṽim = (Vx + Ṽ ) sin(δx + δ̃) (6.151)

By making use of the trigonometric identities:

cos(a + b) = cos a cos b − sin a sin b (6.152)

sin(a + b) = sin a cos b + cos a sin b (6.153)

equations (6.150) and (6.151) become:

Vre,z = (Vx + Ṽ )(cos δx cos δ̃ − sin δx sin δ̃)

= Vx cos δx cos δ̃ + Ṽ cos δx cos δ̃ − Vx sin δx sin δ̃ − Ṽ sin δx sin δ̃

(6.154)

and

Vim,z = (Vx + Ṽ )(sin δx cos δ̃ + cos δx sin δ̃)

= Vx sin δx cos δ̃ + Ṽ sin δx cos δ̃ + Vx cos δx sin δ̃ + Ṽ cos δx sin δ̃

(6.155)

The measurement error of the real part of the voltage, using (6.150) and (6.154)
is equal to:

Ṽre = Vre,z − Vre,x

= Vx cos δx cos δ̃ + Ṽ cos δx cos δ̃ − Vx sin δx sin δ̃ − Ṽ sin δx sin δ̃ − Vx cos δx

= Vx cos δx(cos δ̃ − 1) + Ṽ cos δx cos δ̃ − Vx sin δx sin δ̃ − Ṽ sin δx sin δ̃

(6.156)
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and the measurement error of the imaginary part of the voltage, using (6.151) and
(6.155) is equal to:

Ṽim = Vim,z − Vim,x

= Vx sin δx cos δ̃ + Ṽ sin δx cos δ̃ + Vx cos δx sin δ̃ + Ṽ cos δx sin δ̃ − Vx sin δx

= Vx sin δx(cos δ̃ − 1) + Ṽ sin δx cos δ̃ + Vx cos δx sin δ̃ + Ṽ cos δx sin δ̃

(6.157)

As it can be observed from (6.156) and (6.157):

● The errors in rectangular coordinates depend on both the true quantities
(magnitude and phase) as well as the errors in polar coordinates.

● The link between the errors in rectangular coordinates and the above-mentioned
quantities is non-linear through trigonometric functions.

The mean value of the error of the real part of the voltage, starting from (6.156),
is calculated as:

μṼ re,x = E[Ṽre] = E[Vx cos δx cos δ̃] − E[Vx cos δx]

+ E[Ṽ cos δx cos δ̃] − E[Vx sin δx sin δ̃] − E[Ṽ sin δx sin δ̃] (6.158)

Since the errors in polar coordinates are assumed to be zero-mean Gaussian and
independent:

E[Ṽ cos δx cos δ̃] = cos δxE[Ṽ ]E[cos δ̃] = 0, since E[Ṽ ] = 0 and similarly

E[Ṽ sin δx sin δ̃] = 0 (6.159)

Then (6.158) becomes:

μṼ re,x = Vx cos δxE[cos δ̃] − Vx cos δx − Vx sin δxE[sin δ̃] (6.160)

To calculate the value of E[cos δ̃] and E[sin δ̃], where δ̃ ∼ N (0, σ 2
δ ), Euler’s

formula is used:

ejδ = cos δ + j sin δ (6.161)

Then, the characteristic function �X (t) for a Gaussian distributed variable X ∼
N (μ, σ 2) can be defined as:

�X (t) = E[ejtX ] = ejtμ− 1
2 σ 2t2

(6.162)
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where t ∈ R is the argument of the characteristic function. For t = 1 and since μδ = 0,
(6.162) becomes:

E[ej̃δ] = e0− 1
2 σ 2

δ = e− 1
2 σ 2

δ (6.163)

Going back to (6.161), by taking the expectations in both parts of the equation
and by using (6.163), the imaginary part E[sin (̃δ)] is equal to zero and:

E[cos δ̃] = E[ej̃δ] = e− 1
2 σ 2

δ (6.164)

Hence, (6.160) becomes:

μṼ re,x = Vx cos δx

(
e− 1

2 σ 2
δ − 1

)
(6.165)

Similarly, the mean error of the imaginary part of the voltage is equal to:

μṼ im,x = Vx sin δx

(
e− 1

2 σ 2
δ − 1

)
(6.166)

The bias becomes significant only for large values of magnitude and/or large
phase errors.

The measurement variance of the real part of the voltage, without doing any
approximations, is calculated as:

VarṼ re,x = Var[Ṽre] (6.167)

According to the properties of the variance, if X , Y and Z are independent random
variables, then the covariance terms are zero and:

Var[aX + bY − cZ] = a2Var[X ] + b2Var[Y ] + c2Var[Z] (6.168)

In this respect, (6.167) becomes:

VarṼ re,x = V 2
x cos2 δxVar[cos δ̃]

+ cos2 δxVar[Ṽ cos δ̃] + V 2
x sin2 δxVar[sin δ̃] + sin2 δxVar[Ṽ sin δ̃]

(6.169)

By using the definition of the variance

Var[X ] = E[X 2] − (E[X ])2 (6.170)

and its following property for the product of two independent variables X , Y :

Var[XY ] = (E[X ])2Var[Y ] + (E[Y ])2Var[X ] + Var[X ]Var[Y ] (6.171)
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Equation (6.169) becomes:

VarṼ re,x = V 2
x cos2 δx(E[cos2 δ̃] − (E[cos δ̃])2)

+ cos2 δx((E[Ṽ ])2Var[cos δ̃] + (E[cos δ̃])2Var[Ṽ ] + Var[Ṽ ]Var[cos δ̃])

+ V 2
x sin2 δx(E[sin2 δ̃] − (E[sin δ̃])2)

+ sin2 δx((E[Ṽ ])2Var[sin δ̃] + (E[sin δ̃])2Var[Ṽ ] + Var[Ṽ ]Var[sin δ̃])

(6.172)

The expectation E[cos2 δ̃] is obtained in the following way:

E[cos2 δ̃] = E

[
1

2
+ cos (2̃δ)

2

]
= 1

2
(1 + e−2σ 2

δ ) (6.173)

The expectation E[sin2 δ̃] is computed in a similar way and is equal to:

E[sin2 δ̃] = 1

2
(1 − e−2σ 2

δ ) (6.174)

By using the fact that E[sin (̃δ)] = 0, Var[Ṽ ] = σ 2
V , E[Ṽ ] = 0, as well as (6.164),

(6.173) and (6.174), equation (6.172) becomes:

VarṼ re,x = V 2
x cos2 δx

1

2
(1 + e−2σ 2

δ ) − V 2
x cos2 δxe−σ 2

δ + V 2
x sin2 δx

1

2
(1 − e−2σ 2

δ )

+ σ 2
V sin2 δx

1

2
(1 − e−2σ 2

δ ) + σ 2
V cos2 δx

1

2
(1 + e−2σ 2

δ ) (6.175)

Equation (6.175) can be re-written as:

VarṼ re,x = V 2
x cos2 δx

2
+ V 2

x cos2 δxe−2σ 2
δ

2
− V 2

x cos2 δxe−σ 2
δ

+ V 2
x sin2 δx

2
− V 2

x sin2 δxe−2σ 2
δ

2
+ σ 2

V sin2 δx

2

− σ 2
V sin2 δxe−2σ 2

δ

2
+ σ 2

V cos2 δx

2
+ σ 2

V cos2 δxe−2σ 2
δ

2
(6.176)

and

VarṼ re,x = V 2
x cos2 δxe−σ 2

δ

(
eσ 2

δ + e−σ 2
δ

2

)
(6.177)

− V 2
x cos2 δxe−σ 2

δ + V 2
x sin2 δxe−σ 2

δ

(
eσ 2

δ − e−σ 2
δ

2

)

= σ 2
V cos2 δxe−σ 2

δ

(
eσ 2

δ + e−σ 2
δ

2

)
+ σ 2

V sin2 δxe−σ 2
δ

(
eσ 2

δ − e−σ 2
δ

2

)
(6.178)
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By using the trigonometric identities for the hyperbolic sine and cosine:

sinh x = ex − e−x

2
(6.179)

cosh x = ex + e−x

2
(6.180)

the measurement variance of the real part of the voltage can be finally written as:

VarṼ re,x = V 2
x e−σ 2

δ

[
cos2 δx(cosh(σ 2

δ ) − 1) + sin2 δx sinh(σ 2
δ )

]

+ σ 2
V e−σ 2

δ

[
cos2 δx cosh(σ 2

δ ) + sin2 δx sinh(σ 2
δ )

]
(6.181)

The measurement variance of the imaginary part of the voltage is calculated in
the same way and is equal to:

VarṼ im,x = V 2
x e−σ 2

δ

[
sin2 δx(cosh(σ 2

δ ) − 1) + cos2 δx sinh(σ 2
δ )

]

+ σ 2
V e−σ 2

δ

[
sin2 δx cosh(σ 2

δ ) + cos2 δx sinh(σ 2
δ )

]
(6.182)

So far, the mean values and the variances of the errors in rectangular coordinates
have been derived as a function of both the true quantities and the measurement errors
expressed in polar coordinates. The mean values are given in (6.165) and (6.166),
whereas the variances are given in (6.181) and (6.182). However, the true system
state is not known. Therefore, the error statistics have to be re-expressed as a function
of the measurements by introducing secondary errors [39].

Starting from (6.165) and using (6.146) and (6.147), the mean value of the error
of the real part of the voltage can be expressed as:

μṼ re,x = (Vz − Ṽ ) cos(δz − δ̃)
(

e− 1
2 σ 2

δ − 1
)

(6.183)

Then, by using the trigonometric identities (6.152) and (6.153) and after some
algebraic manipulations, (6.183) becomes:

μṼ re,x = Vz cos δz cos δ̃
(

e− 1
2 σ 2

δ − 1
)

− Ṽ cos δz cos δ̃
(

e− 1
2 σ 2

δ − 1
)

+ Vz sin δz sin δ̃
(

e− 1
2 σ 2

δ − 1
)

− Ṽ sin δz cos δ̃
(

e− 1
2 σ 2

δ − 1
)

(6.184)

As mentioned in Reference 39, the new mean value of the error of the real part
of the voltage, conditioned on the measured state, is:

μṼ re,z = E[μṼ re,x|Vz, δz] (6.185)

Since Ṽ and δ̃ are assumed to be independent and E[sin (̃δ)] = 0, E[Ṽ ] = 0, (6.185)
becomes:

μṼ re,z = Vz cos δz

(
e−σ 2

δ − e− 1
2 σ 2

δ

)
(6.186)

The mean value of the error of the imaginary part of the voltage, conditioned on
the measured state, is equal to:

μṼ im,z = Vz sin δz

(
e−σ 2

δ − e− 1
2 σ 2

δ

)
(6.187)
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The new variances, associated to the new mean values, e.g., Reference 39, are
given by:

VarṼ re,z = V 2
z e−2σ 2

δ [cos2 δz(cosh(2σ 2
δ ) − cosh(σ 2

δ ))

+ sin2 δz(sinh(2σ 2
δ ) − sinh(σ 2

δ ))]

+ σ 2
V e−2σ 2

δ [cos2 δz(2 cosh(2σ 2
δ ) − cosh(σ 2

δ ))

+ sin2 δz(2 sinh(2σ 2
δ ) − sinh(σ 2

δ ))] (6.188)

and

VarṼ im,z = V 2
z e−2σ 2

δ [sin2 δz(cosh(2σ 2
δ ) − cosh(σ 2

δ ))

+ cos2 δz(sinh(2σ 2
δ ) − sinh(σ 2

δ ))]

+ σ 2
V e−2σ 2

δ [sin2 δz(2 cosh(2σ 2
δ ) − cosh(σ 2

δ ))

+ cos2 δz(2 sinh(2σ 2
δ ) − sinh(σ 2

δ ))] (6.189)

Note that the variances conditioned on the measured values are larger than the
ones conditioned on the true state. This is normal, since they account for the additional
errors due to the evaluation at the measured position.

6.5 Data conditioning and bad data processing in PMU-based
state estimators

One of the main features of SE is the ability to detect and identify errors in the
measurements, the so-called bad data. Detection means recognizing the presence of
bad data in the measurement set; identification means determining which measure-
ments are bad data. In general, the inclusion of bad data in the estimation process
significantly deteriorates the accuracy of the estimate, although the same bad data
can have different influence on the estimate depending on the employed SE method
and measurement redundancy. Besides, the presence of bad data is common in power
systems, since the amount of collected measurements is usually very large and the
error sources are several. Therefore, the coupling of a bad data processor to state
estimators that are vulnerable to bad data, such as the WLS, is of fundamental impor-
tance to maintain the reliability of the estimates and, consequently, the confidence of
the system operator on the state estimator. Instead, some state estimators belonging
to the category of the robust state estimators, are designed to have an intrinsic bad
data rejection capability, without the need of being equipped with a separate bad
data processor [19]. One of the most common robust estimators is the least absolute
value (LAV) estimator [40]. The main drawback of LAV is the high computational
time that can be significantly decreased if the measurement model is linear. Thus, the
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use of synchrophasor-only measurements allows LAV to become computationally
competitive with the LWLS.

Bad data consisting of gross errors are measurements very distant from their
expected value, such as negative magnitude values, and can be identified with simple
plausibility checks. Examples of possible causes of gross errors are telecommunica-
tion network or meter failure, erroneous wire connections, software bugs and loss of
GPS signal (if GPS-synchronized meters are used). Thus, an algorithm that analyses
the incoming measurements seeking for gross errors and missing data is suggested.
This process can also include data conditioning algorithms that refine the raw mea-
surements, such as procedures for the replacement of missing data or for the filtering
of undesired disturbances. Data conditioning is particularly important for PMU mea-
surements since they are vulnerable to additional sources of errors due to their high
accuracy and time resolution [41, 42].

Some other bad data consist of measurement errors with magnitude a few times
larger than their expected standard deviation that still may significantly affect the esti-
mate accuracy, but require more advanced methods to be detected. These errors can
be due, for instance, to the degradation of the meter accuracy or to electromagnetic
interferences. Static state estimators dealing with this kind of bad data are coupled
with bad data processors placed after the estimation, called post-estimation methods.
The availability of the estimate allows post-estimation methods to exploit the statis-
tical properties of SE. Typically, the analysis is carried out on the objective function
and the measurement estimation residuals, since they quantify how well the set of
measurements fits the network model. The common assumption of post-estimation
methods is the exact knowledge of the network model. The consequence of such
hypothesis is that any inconsistency between measurements and network model is
attributed to the former as a bad data. However, network parameter errors can have
a similar effect of bad data on the state estimate, so that a bad data processor may
identify persistent bad data in presence of network parameter errors.11 In most of
the cases, post-estimation methods are reliable and precise, but this usually comes at
the expense of computational time, because after the identification of bad data the
state has to be re-estimated iteratively until no more bad data are diagnosed.

A well-known bad data detection method is the χ2-test, but it usually fails to
detect bad data if the error is lower than 20 standard deviations [19, 44]. It is based on
the assumption that each measurement residual ri is a randomly distributed Gaussian
variable with zero mean and variance Rii. Thus, it can be easily demonstrated that
the objective function J (̂x) has a χ2-distribution with (m − n) degrees of freedom.
The test reveals the presence of bad data if J (̂x) > χ 2

(m−n),ζ , where ζ is the chosen
detection confidence probability, e.g., 95% or 99%. The values of χ 2

(m−n),ζ can be
found in dedicated tables or using the Matlab function chi2inv(ζ , m − n).

Another widely used post-estimation method for bad data detection and iden-
tification is the largest normalized residual (LNR) test, thanks to its accuracy and

11An effective method to distinguish between bad data and network parameter errors is presented in
Reference 43.
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straightforward implementation [19, 44]. It requires the calculation of the normalized
measurement estimation residual vector r̂ N as in (6.90). Each normalized residual
should be distributed as ∼ N (0, 1); therefore, the LNR test detects bad data if at least
one element of r̂ N exceeds a certain threshold, e.g., 3 or 4. Assuming that r̂N

i is the
largest residual exceeding the threshold, the ith measurement is flagged as bad data
and the SE is re-computed without using this measurement. This procedure is iterated
until no bad data are detected. The LNR test limits its identification capability to a sin-
gle bad data or multiple non-interacting bad data, namely multiple bad data appearing
simultaneously whose residuals are not correlated. In case of multiple interacting bad
data (whose residuals are correlated), the hypothesis testing identification method
has shown better performance [19, 45]. Moreover, critical measurements or measure-
ments belonging to a critical pair cannot be identified as bad data by post-estimation
algorithms, since their residuals are always equal to zero. A critical measurement
is a measurement that makes the network unobservable if removed, while a criti-
cal pair is composed of two measurements that makes the network unobservable if
removed simultaneously. It is evident that an abundant measurement redundancy helps
substantially the detection and identification of bad data.

Concerning estimators that include a process model, such as the recursive ones,
bad data processing can be performed before and/or after the estimation using,
respectively, pre- and/or post-estimation methods. Pre-estimation methods consist
in statistical procedures or simply logical checks that typically involve the exam-
ination of the normalized measurement innovation vector defined in (6.111) [46,
47, 42]. Therefore, they cannot be optimal and their reliability is enhanced if com-
bined with a post-estimation method accounting also for the measurement estimation
residuals [47]. High values of some elements of the innovation vector can be due
to bad data or to sudden variation of the system state caused, for instance, by
inrushes, faults and disconnection of loads or generators. Before performing bad data
identification, pre-estimation methods need an algorithm that distinguishes between
the two.

Historically, static state estimators, and therefore post-estimation methods, have
been the main subject of the literature research and have been employed in real
applications. The reasons are multiple and the main ones are listed hereafter. Static
state estimators are characterized by lower computational complexity with respect to
recursive ones. Furthermore, they are, in general, more reliable since they use only
one measurement set without the need to consider a process model that may lead
to estimation errors in case of sudden and unexpected changes of the power system
state. The meters providing measurements for SE are usually voltage, current and
power meters that send the measurement packet at intervals of several seconds or
a few minutes. Hence, there is sufficient time to perform post-estimation analysis.
However, the recent inclusion of PMU data in SE have made possible to dramatically
increase the SE refresh rate to a few tens of milliseconds and to use effectively the
process model of (6.77). Although the bad data processing theory proposed by the
literature remains valid, PMUs have raised new interest on recursive state estimators,
and consequently on pre-estimation methods, as well as on data conditioning of raw
measurements.
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6.6 Kalman filter vs. weighted least squares

This section compares theoretically the accuracy of KF vs. WLS. To formally quantify
this difference, it is useful to recall that the KF process makes use of all the available
measurements, past and present, whereas the WLS algorithm uses only measurements
of the current time-step. The former should intuitively perform better, provided that the
process model hypotheses that underlie the KF are correct. The following theorem
formalizes this aspect. It states that the estimation error with the KF algorithm is
always less than the estimation error with the WLS algorithm, the difference being
given equal to the mean square difference between the two methods:

Theorem 6.1. Assume that the true (unobserved) state xt satisfies the process model
in (6.77). Assume that the system parameters are known. Let x̂t,WLS and x̂t,KF be the
state estimates obtained at time-step t with the WLS and KF algorithms, respectively.
Then

E[‖xt − x̂t,WLS‖2] = E[‖xt − x̂t,KF‖2] + E[‖̂xt,WLS − x̂t,KF‖2] (6.190)

Proof. First of all, by standard KF theory, e.g., Reference 48, the estimation of
the non-observable state is equal to its conditional expectation, given the sequence of
measurements, i.e.,

x̂t,KF = E[xt|Ft] (6.191)

where Ft the σ -field generated by all measurements up to and including time-step t.
Second, consider the Hilbert space of random vectors (with values in R

n)
equipped with the inner product 〈X, Y〉H � E[

∑n
c=1 XcYc]. It is requested to show

that the random vector xt − x̂t,KF is orthogonal,12 in the sense of this Hilbert space, to
all random vectors Y that are Ft-measurable (i.e., that are a function of the measure-
ments up to time t; in this context, the initial conditions of the estimation algorithms
are assumed to be known and non-random). Note that what needs to be shown is that:

E[〈Y, xt〉] = E[〈Y, x̂t,KF〉] (6.192)

with 〈Y, xt〉 = ∑n
c=1 Ycxt,c.

To prove (6.192), observe that, for any (real-valued) random variable U that is
measurable with respect to Ft , it can be written that E[U |Ft] = U and further [48]:

E[Uxt,c|Ft] = UE[xt,c|Ft] = U x̂t,c,KF

Note that such a U can be any non-linear real-valued function of (z1, . . . , zt). Take
expectations on both sides and use the fact that the expectation of the conditional
expectation is the same as the original expectation (law of total expectation, e.g.,
Reference 48) and obtain

E[Uxt,c] = E[U x̂t,c,KF ] (6.193)

12We remind here that when two vectors are orthogonal, their inner product is equal to zero.
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Consider now any Ft-measurable random vector Y, apply (6.193) to U = Yc for all
coordinates c and sum over c; it comes:

E

[
n∑

c=1

Ycxt,c

]
= E

[
n∑

c=1

Yĉxt,c, KF

]
(6.194)

which shows (6.192) as required and it means that:

E

[
n∑

c=1

Yc( x̂t,c − x̂t,c,KF )

]
= E[〈Y, xt − x̂t,KF〉] = 0 (6.195)

namely Y and xt − x̂t,KF are orthogonal.
Now observe that both x̂t,WLS and x̂t,KF are Ft-measurable because they are

derived from the measurements. Therefore, the previous result can be applied to
Y = x̂t,WLS − x̂t,KF . Equation (6.190) then follows from Pythagoras’s equality.

Final remark: The theorem applies as long as the process model in (6.77) holds.
This explains why it is important to verify the adequacy of the process model.

6.7 Numerical validation and performance assessment
of the state estimation

6.7.1 Linear state estimation case studies

6.7.1.1 Distribution network case study: IEEE 13-bus
distribution test feeder

The adopted IEEE 13-bus distribution test feeder is shown in Figure 6.3 and is based
on Reference 49. It is a 3-ph feeder of 13 buses where Bus 1 represents the connection
to the sub-transmission network with a short-circuit power Ssc = 300 MVA and a ratio
between the real and imaginary parts of the short-circuit impedance Rsc/Xsc = 0.1.
The network has a rated voltage equal to 15 kV line-to-line root mean square (RMS)
and the voltage base Vb = 15 kV (line-to-line RMS). The power base Sb = 10 MVA.
The lines are unbalanced and the used line configuration is the #602 of Reference
49. The values of the resistance, reactance and susceptance and the line lengths
are given in Appendix B. The loads/distributed energy resources (DERs) are also
characterized by unbalanced power absorptions/injections, respectively. Figure 6.4
shows the aggregated active and reactive power consumption of the loads in three
phases, whereas Figure 6.5 shows the power injected by DERs. The data comes
from an experimental campaign in real distribution grids in the South-West region
of Switzerland, in the EPFL campus and in a feeder in the Netherlands (BML 2.10
distribution feeder operated by Alliander). The DERs (one Mini-Hydro power plant
at Bus 4 and one photovoltaic unit at Bus 12) inject only active power.

Table 6.1 shows the location of PMUs for the IEEE 13-bus distribution test feeder.
In this case, the number of PMUs is equal to 7. It is assumed that each PMU measures
the bus phase-to-ground voltage phasors and the nodal current injection phasors;
therefore in this case, d1 and d2 of (6.4) are equal to 7 and d3 is equal to 0.
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Figure 6.3 Network topology of the IEEE 13-bus distribution test feeder [49],
together with the adopted PMU placement. We assume that Bus 1 is the
connection point of the system to an external network that is represented
by a voltage source in series with the short-circuit impedance Zsc
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Figure 6.4 Time evolution of the active and reactive powers of the loads, per
phase, used in the IEEE 13-bus distribution test feeder

The SE accuracy assessment of the IEEE 13-bus distribution test feeder is per-
formed by using the LWLS-SE and the DKF-SE. This is justified by the fact that the
measurements come only from PMUs; therefore, the SE is linear. The value of Q
used by the DKF-SE is assessed using the method presented in Section 6.3.4, where
the parameter N = 20. Current and voltage sensors used to perform the tests are
assumed to be of 0.1-class. Limits of ratio error and phase displacement imposed by
References 50, 51 are shown in Tables 6.2 and 6.3, respectively.
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power plant at Bus 4 and one photovoltaic unit at Bus 12), per phase,
used in the IEEE 13-bus distribution test feeder

Table 6.1 PMUs location in the IEEE 13-bus
distribution test feeder

Number Buses

PMUs 7 1 3 5 8 10 12 13

Table 6.2 Limits of ratio error and phase displacement of the
used current sensors in the IEEE 13-bus distribution
test feeder, according to Reference 50

Class Ratio error (%) Phase displacement (rad)

0.1 0.1 1.5 × 10−3

Table 6.3 Limits of ratio error and phase displacement of the
used voltage sensors in the IEEE 13-bus distribution
test feeder, according to Reference 51

Class Ratio error (%) Phase displacement (rad)

0.1 0.1 1.5 × 10−3
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Table 6.4 Limits of magnitude and phase errors for the used
PMUs in the IEEE 13-bus distribution test feeder

TVE (in %) Magnitude error (%) Phase error (rad)

0.14 0.1 10−3
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Figure 6.6 Equivalence of magnitude and phase error with PMUs TVE values
(adapted from Reference 1)

The limits of magnitude and phase errors for the adopted PMUs are shown in
Table 6.4 and correspond to a total vector error (TVE) equal to 0.14%. Such a TVE
value results from assuming PMU class-P devices characterized by typical maximum
errors in magnitude and phase of 0.1% and 10−3 rad, respectively.

Here below are given the steps for the numerical derivation of the measurement
noise covariance matrix R, using the theory in Section 6.4.

1. The values of the maximum errors for the 0.1-class electrical sensors, in terms
of magnitude error and phase displacement, are given in Tables 6.2 and 6.3.
Hence, the limit for the magnitude error is 0.1%, whereas the maximum phase
displacement is 1.5 × 10−3 rad.
The maximum magnitude error of PMUs is obtained from Figure 6.6 by assuming
a TVE equal to 0.1% and a null phase error. Then, the maximum phase error is
obtained from Figure 6.6 by assuming a TVE equal to 0.1% and a null magnitude
error. The maximum magnitude and phase errors of PMUs are, respectively, 0.1%
and 1 × 10−3 rad, which corresponds to a TVE of 0.14%.
Then, the cumulative maximum errors of sensors and PMUs are (0.1 + 0.1)%
for the voltage magnitude and (1.5 × 10−3 + 1 × 10−3) rad for the voltage
phase.
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Figure 6.7 Time evolution of the maximum estimation errors calculated by using
(6.196), for the LWLS-SE and DKF-SE, case of the IEEE 13-bus test
feeder

2. The second step consists in the expression of the maximum magnitude errors
with respect to the measured values.

3. The third step includes the calculation of the cumulative standard deviations,
which are equal to one-third of the maximum errors, assuming that the 99.73%
of the values lie within three standard deviations from the mean.

4. By using the cumulative standard deviations from the previous step and the
measurements, the variances in rectangular coordinates are calculated by using
(6.188) and (6.189).

5. The diagonal of the measurement noise covariance matrix is composed of the
aforementioned variances.

Figure 6.7 shows the time evolution of the maximum errors of the estimated state
vs. the true one for the LWLS-SE and DKF-SE, for a time window of 30 s and
a resolution of 20 ms.13 Errors refer to both voltage magnitude V and phase δ. The
magnitude error is expressed in pu and the phase error is expressed in radians. At time-
step t, the maximum estimation error (MEE) is calculated considering the estimation
errors in all the buses and the three phases as:

MEE(Vt) = max[errV a
1,t , errV b

1,t , errV c
1,t , . . . , errV a

n,t , errV b
n,t , errV c

n,t]
(6.196)

MEE(δt) = max[errδa
1,t , errδb

1,t , errδc
1,t , . . . , errδa

n,t , errδb
n,t , errδc

n,t]

Both the magnitude and the phase maximum errors of the LWLS-SE are larger than
the ones of the DKF-SE along the overall simulation time.

To clarify further this aspect, Figure 6.8 shows the root mean squared errors
(RMSEs) for the LWLS-SE and the DKF-SE and considering the same time window
of Figure 6.7. Only the maximum RMSE among the three phases for each bus is

13The KF estimates have always an initial phase in which they converge from an arbitrary initial value (e.g.,
a flat-start initialization) towards the true state. For brevity, in all the figures that show the KF accuracy
performance, this initial phase is not shown.
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case of the IEEE 13-bus test feeder. Only the maximum RMSE among
the three phases for each bus is shown

shown. The errors refer to both voltage magnitude V and phase δ. The magnitude
error is expressed in pu and the phase error is expressed in radians. As known, the
RMSE for the voltage magnitude and phase at bus i and phase p is calculated as:

RMSE(V p
i ) =

√√√√ 1

Ns

Ns∑
ns=1

( V̂ p
i,ns

− V p
i,ns

)2

(6.197)

RMSE(δp
i ) =

√√√√ 1

Ns

Ns∑
ns=1

( δ̂p
i,ns

− δ
p
i,ns

)2

As it can be observed, the RMSEs of LWLS-SE are larger than the ones of the DKF-SE
for all the 13 network buses.

6.7.1.2 Transmission system case study: IEEE 39-bus transmission
test system

The IEEE 39-bus test system [52], shown in Figure 6.9, is balanced; therefore, only the
direct sequence has been considered. Bus 31 in Figure 6.9 is the connection point of
the system to an external grid characterized by a short-circuit power Ssc = 50 GVA and
a ratio between real and imaginary parts of the short-circuit impedance Rsc/Xsc = 0,
which is a standard assumption for transmission power systems. The IEEE 39-bus
system is assumed to have four different voltage levels, i.e., 380 kV, 230 kV, 125 kV
and 15 kV. The transformer ratios are given in Appendix B. The chosen value for the
base power is Sb = 100 MVA. The values of the resistance, reactance and susceptance
are given in Appendix B.

Table 6.5 gives the values of the active and reactive power injections at the respec-
tive buses, which are in accordance with Reference 52. The convention is that the
absorbed powers are marked with a minus, whereas the generated powers have a
positive sign.
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Figure 6.9 Network topology of the IEEE 39-bus test system [52], together with
the adopted PMU placement. We assume that Bus 31 is the connection
point of the system to an external network that is represented by a
voltage source in series with the short-circuit impedance Zsc

The SE accuracy assessment of the IEEE 39-bus transmission test system is per-
formed by using the LWLS-SE and the DKF-SE. The current and voltage sensors used
to perform the tests are assumed to be of 0.5-class. The PMU and sensor accuracies
are reported in Tables 6.6–6.8. The assumed PMU locations and the zero-injection
buses are given in Table 6.9. The variance assigned to zero-injection buses is lower
than the ones of the other measurements since they are not affected by error. It is
assumed that each PMU measures the bus phase-to-ground voltage phasors and the
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Table 6.5 Active and reactive power injections for the IEEE
39-bus transmission test system

Bus Type P (MW) Q (MW)

3 Load −322 −2.4
4 Load −500 −184
7 Load −233.8 −84
8 Load −522 −176
12 Load −7.5 −88
15 Load −320 −153
16 Load −329 −32.3
18 Load −158 −30
20 Load −628 −103
21 Load −274 −115
23 Load −247.5 −84.6
24 Load −308.6 92
25 Load −224 −47.2
26 Load −139 −17
27 Load −281 −75.5
28 Load −206 −27.6
29 Load −283.5 −26.9
30 Generator 250 189.9
31 Load −9.2 −4.6
32 Generator 650 204.8
33 Generator 632 72.3
34 Generator 508 149.8
35 Generator 650 258.7
36 Generator 560 212.8
37 Generator 540 30.8
38 Generator 830 63.0
39 Load −104 −250.0

Table 6.6 Limits of magnitude and phase errors for the used
PMUs of the IEEE 39-bus transmission test system

TVE (in %) Magnitude error (%) Phase error (rad)

0.14 0.1 10−3

nodal current injection phasors; therefore in this case, d1 and d2 of (6.4) are equal to
19 and d3 is equal to 0.

Figure 6.10 shows the time evolution of the maximum errors of the estimated
state vs. the true one for the LWLS-SE and DKF-SE. The MEEs are calculated by
using (6.196). As it can be observed, both the magnitude and the phase maximum
errors of the LWLS-SE are significantly larger than the ones of the DKF-SE along
the overall simulation time.
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Table 6.7 Limits of ratio error and phase displacements of the
used current sensors of the IEEE 39-bus transmission
test system, according to Reference 50

Class Ratio error (%) Phase displacement (rad)

0.5 0.5 9 × 10−3

Table 6.8 Limits of ratio error and phase displacement of the
used voltage sensors of the IEEE 39-bus transmission
test system, according to Reference 51

Class Ratio error (%) Phase displacement (rad)

0.5 0.5 6 × 10−3

Table 6.9 PMU locations and zero-injection buses in the IEEE
39-bus test system

Case Number Buses

Zero-injection buses 12 1 2 5 6 9 10 11
13 14 17 19 22

PMUs 19 4 8 12 15 18 20 21 23 24 25
27 28 29 30 31 32 33 35 39
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system
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Table 6.10 PMUs and RTUs location in the IEEE 13-bus
distribution test feeder

Number Buses

PMUs 7 1 3 5 8 10 12 13
RTUs 7 1 3 5 8 10 12 13
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Figure 6.11 Time evolution of the maximum estimation errors calculated by using
(6.196), for the NLWLS-SE and EKF-SE, case of the IEEE 13-bus test
feeder

6.7.2 Non-linear SE case studies

The network used as a case study to show the performance of the non-linear SE is
the 13-bus distribution test case. The network data is the same as the one reported
in Section 6.7.1.1. Table 6.10 shows the location of PMUs and RTUs for the IEEE
13-bus distribution test feeder. It is assumed that each PMU measures the bus phase-
to-ground voltage phasors and each RTU measures the nodal active and reactive
power injections; therefore in this case, d1 and u1 of (6.44) are equal to 7 and u2 is
equal to 0.

The accuracy of the PMUs is the one reported in Table 6.4. The cumulative error
of sensors and RTUs is assumed to be equal to 3%. The SE accuracy assessment
of the IEEE 13-bus distribution test feeder is in this case performed by using the
NLWLS-SE and the EKF-SE.

Figure 6.11 shows the time evolution of the maximum errors of the estimated
state vs. the true one for the NLWLS-SE and EKF-SE, for a time window of 30 s
and a resolution of 20 ms. The errors refer to both voltage magnitude V and phase δ.
The magnitude error is expressed in pu and the phase error is expressed in radians.
At time-step t, the MEE is calculated by using (6.196). Both the magnitude and the
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Figure 6.13 Process model validation for the case of linear SE (DKF) of the IEEE
13-bus distribution test feeder: sample ACFs of the normalized
residuals of the state estimates referred to the real and imaginary
parts of the voltage at Bus 9

phase maximum errors of the NLWLS-SE are larger than the ones of the EKF-SE
along the overall simulation time.

Figure 6.12 shows the RMSEs calculated by using (6.197), for the NLWLS-SE
and the EKF-SE and considering the same time window of Figure 6.11. Only the
maximum RMSE among the three phases for each bus is shown. The errors refer to
both voltage magnitude V and phase δ. The magnitude error is expressed in pu and the
phase error is expressed in radians. As it can be observed, the RMSEs of NLWLS-SE
are larger than the ones of the EKF-SE for all the 13 network buses.
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6.8 Kalman filter process model validation

The validity of the KF algorithm depends on how accurate the underlying process
model is. More precisely, since the KF equations use only second-order properties,
it is sufficient to verify that the covariance properties of the model do hold. It is
thus needed to verify whether the normalized residuals of the state estimates rN

x
are uncorrelated by analyzing the sample auto correlation functions (ACFs). The ith

element of rN
x is calculated as:

rN
x,i = x̂t,i − x̂t−1,i√

Qt−1,ii

(6.198)

The sample ACFs are computed by considering the first ∼√
NS lags, where NS =

1 500 is the number of simulation time-steps. If the residuals are uncorrelated, the
ACFs should be within the noise margins ±1.96/

√
NS with 95% of probability [53].

The above-mentioned condition is fulfilled for the case of the linear SE of the
IEEE 13-bus distribution test feeder, as shown in Figure 6.13. The results refer to the
real and imaginary parts of the voltage at Bus 9, which is the bus where the largest
estimation error is observed. Since the normalized residuals of the state estimates are
uncorrelated, the KF process model is accurate. Note that the sample ACF is, as a
matter of fact, a statistically distributed quantity. The fact that, in few cases, the ACFs
are slightly beyond the noise margins do not violate the validity of the result and the
numerical proof of the statistical correctness of the process model. The same analysis
for the case of the non-linear SE of the IEEE 13-bus distribution test feeder is shown
in Figure 6.14 with respect to the magnitude and phase of the voltage at Bus 9.

It is worth pointing out that the validation of the KF process model together with
the assessment of the process noise covariance matrix Q require further investiga-
tion. Future research shall focus on the analysis of the innovation and measurement
residual vectors.
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6.9 Numerical validation of Theorem 6.1

In this section, it is verified whether the quantitative conclusion of Theorem 6.1 of
Section 6.6, namely (6.190), numerically holds. Figure 6.15 shows the left- and right-
hand sides (LHS and RHS, respectively) of (6.190) for the case of the linear SE of the
IEEE 13-bus distribution test feeder. The LHS and RHS of (6.190) are close to each
other, which means that the equality in Theorem 6.1 is in expectation. In Figure 6.15,
expectations are estimated by empirical averages; therefore, a small discrepancy is
expected. Figure 6.15 also shows the contributions of the two terms of the RHS of
(6.190). It can be observed that the contribution of the second one is predominant
with respect to the first one, proving that the DKF is applied correctly.

Figure 6.16 shows the verification of (6.190) for the case of the non-linear SE
of the IEEE 13-bus distribution test feeder. As it can be observed, the quantitative
conclusion of Theorem 6.1 holds also in the case of the non-linear SE, proving that
EKF is applied correctly.
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Figure 6.15 Numerical validation of (6.190) for the case of linear SE (DKF) of the
IEEE 13-bus distribution test feeder: LHS vs. RHS of the equation.
The separate contribution of the two terms of the RHS is also shown
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Figure 6.16 Numerical validation of (6.190) for the case of non-linear SE (EKF) of
the IEEE 13-bus distribution test feeder: LHS vs. RHS of the equation.
The separate contribution of the two terms of the RHS is also shown
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